
Journal of Statistical Physics, Vol. 71, Nos. 1/2, 1993 

Partial Absorption and "Virtual" Traps 
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The spatial probability distribution associated with diffusion and attenuation in 
partially absorbing media is studied. An equivalence is established between a 
system with free diffusion for x > 0 and partial absorption for x < 0, and a 
semi-infinite system (x > 0) with a radiation boundary condition at x= 0. By 
exploiting this equivalence, it is shown that the effect of a partially absorbing 
medium in the long-time limit is equivalent to that of a perfect, "virtual" trap 
whose size is smaller than the original absorbing medium. For short times, 
however, there is substantial penetration of diffusing particles into the absorber. 
The virtual trap approach is readily generalized to higher dimensions. This 
allows one to obtain the density profile of diffusing particles around a partially 
absorbing spherical trap. An unusual crossover between short-time penetration 
and long-time trapping occurs in two dimensions; the size of the virtual trap 
is exponentially small in the case of weak absorption, corresponding to an 
absorption time which is exponentially large. 
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1. I N T R O D U C T I O N  

The physical basis of Brownian  mot ion  in t ransla t ional ly  invar ian t  media 

is well unders tood,  and  models based on this type of t ranspor t  have 

been applied to the in terpre ta t ion  of an enormous  variety of physical 
phenomena .  There is likewise a large li terature on Brownian  mot ion  in the 

presence of absorb ing  boundaries .  Perfectly absorbing  boundar ies  are 
known  to change the properties of Brownian  mot ion  in ways that  are 
largely understood.  However,  for m a n y  practical applications,  the t rapping 
med ium is par t ia l l y  absorbing, as in the a t t enua t ion  and multiple scattering 
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of light in biological media, in heat conduction processes, and in colloidal 
suspensions. For example, recent studies of photon migration in a turbid 
medium suggest the validity of Brownian motion as the description of 
photon transport, as well as Beer's law of absorption. ~1'2) The analysis of 
scattered laser light in biological tissue suggests, for example, the importance 
of determining the maximum penetration depth of a Brownian particle in 
a partially absorbing medium. Another useful parameter for interpreting 
experimental data is the time required for a diffusing particle to reach 
an absorbing surface at a given distance from the interface of the laser 
beam into the sample. Some aspects of this problem have been addressed 
for models in which the sample is a semi-infinite, partially absorbing 
medium.~m) 

These situations motivate us to consider a theoretical analysis of the 
penetration of a Brownian particle in absorbing media. We are interested 
in developing a quantitative approach to describe how the probability 
distribution of the diffusing particles is influenced by partial absorption. 
For a one-dimensional composite that consists of an absorbing medium 
for x < 0 and a nonabsorbing medium for x > 0, we will show that a con- 
tinuum description can be given either by separate equations for the two 
media, or by a diffusion equation in the nonabsorbing medium with a 
radiation boundary condition at the interface. As a consequence, we will 
show that the concentration of particles inside the partially absorbing 
medium decays rather modestly in time, as t-1/2, leading to a concentration 
at the interface which also decays as t ~/2. The equivalence between the 
two descriptions is the basis for a physical construction in which a partially 
absorbing medium can be replaced by an equivalent perfectly absorbing 
medium of a smaller spatial extent, that is, a perfect "virtual" trap. This 
analogy can be easily extended to higher dimensions, both for steady-state 
and time-dependent problems, and provides a simple way to quantify the 
effects of partial absorption. 

In Section 2 we first determine the probability distribution for a one- 
dimensional composite system, which is described by a diffusion equation 
for x > 0 and a diffusion-absorption equation for x < 0. These results are 
exploited to obtain the time dependence of the maximal penetration of par- 
ticles into the absorbing medium. In Section 3 we show that for sufficiently 
weak absorption, an intermediate-time regime exists, where the distance of 
the closest particle to the absorbing medium grows as t m, before the 
asymptotic t 1/4 growth sets in. An equivalence between the solution of the 
composite system and that for diffusion in the half-space x > 0 with a radia- 
tion boundary condition at x = 0 is derived in Section 4. This result is the 
basis for the correspondence between the partially absorbing medium in 
the range x<~0 and a virtual perfect trap located at a position rT<0.  In 
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Section 5 this virtual trap correspondence is extended to higher dimensions 
for both steady-state and time-dependent situations. As the strength of the 
partially absorbing trap decreases, the radius of the virtual trap vanishes, 
with a dependence that is strongly dimension dependent. Furthermore, in 
two dimensions there is an exponentially long time regime of negligible 
absorption before the virtual trap "turns on," in the limit of weak trapping. 

2. D I F F U S I O N - A B S O R P T I O N  E Q U A T I O N  

Consider a one-dimensional medium which is partially absorbing for 
x < O, with a finite absorption rate q, and nonabsorbing for x > 0 (Fig. 1). 
The time evolution of the density outside the absorber obeys the diffusion 
equation, while the density inside obeys a diffusion-absorption equation: 

at(x, t) 02c(x, 0 
- O qc(x, t), 

Ot ~?x 2 

Oc(x, t) ~2c(x, t) 
D 

~t ~x 2 

x < 0  

x > 0  

(1) 

where D is the diffusion coefficient. At the origin, the concentration and the 
flux ( - D  Oc/Ox) must be continuous. Once the initial condition is specified, 
one can then solve for basic quantities, such as the concentration at the 
interface, and the total number of particles inside the absorber, S ( t )=  
~o ~ c(x, t) dx. This latter quantity is obtained by spatial integration of the 
first line of Eq. (1) to yield 

~S (t) ~ Oc(x, t) ,-=0 
c~t : u ~  - q S  (t) (2) 

This reflects the decrease in S ( t )  because of absorption, and its increase 
because of flux entering at x = 0. We now present the solution to Eq. (1) for 
two simple initial conditions, although the analysis can be carried out for 
an arbitrary initial condition. 

�9 �9 �9 r �9 �9 �9 s �9 - w w . ~  

X ~ o  X > 0 

Fig. 1. The basic geometry in one dimension in which the region x < 0 absorbs at a rate q. 
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2.1. Uni form Initial Density for x > 0  

For c(x, t = 0 ) =  Coil(x),  with H ( x )  the Heaviside step function, we 
first introduce the Laplace transform, c(x, s) = ~ c(x, t) exp(-s t )  dt, to 
reduce Eq. (1) to the ordinary differential equations 

D O2c(x' s) 
Ox 2 - (s + q) c(x, s) = O, x < 0 

(3) 
D ~%(x, s) sc(x, s) = -Co, x > 0 

Ox 2 

subject to continuity of both c(x, s) and its spatial derivative at the origin. 
The solution in Laplace space is 

(Col 1 F / s+q~ l /~ l~  

s 1 - ~ - - c - ~ e x p  - x  ~ , x>O 

where c~(s) = [(s + q)/s] m. 
We are primarily interested in extracting quantities which characterize 

the penetration of particles into the absorber, such as the concentration at 
the interface, c(x = O, s ) =  Co~S[1 + c~(s)], and the number of particles inside 
the absorber S ( s ) - - -  co[D/ ( s+q)] l /a / s [1  + c~(s)]. Inverting the above 
Laplace transforms yields the behavior of these two quantities in the time 
domain, (5) 

S _ ( t ) = c o l  q - -  1 ~q ~ t / t q )  - e x p  - (6) 

where In(x) is the nth-order modified Bessel function. Here we have intro- 
duced dimensionless variables by introducing the characteristic absorption 
time and the typical distance that a particle travels in the absorber before 
absorption 

tq = 1/q and lq = (D/q) 1/2 [ = (Dtq) m ]  (7) 

Interestingly, the concentration at the origin is independent of D. In 
contrast, the behavior of S _ ( t )  does depend on D, since the flux entering 
the absorber at a fixed time depends on D. 
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For short times, t~tq,  absorption is negligible, and one recovers 
purely diffusive behavior, namely S(t) , ,~ co(Dt/n) 1/2 and c(x, t)~-Co/2. In 
this "diffusion-controlled" time regime, therefore, the absorption term in 
the diffusion-absorption equation can be neglected. In the long-time limit, 
we use (5) 

to obtain 

eZ(n- ) 
I n (Z )~  (27CZ)1/2 1-----~Z "+- . . .  , z ~> 1 (8) 

C o 
c ( x - 0 ,  t) (~zt/tq)l/2, t>~ tq (9) 

Comparison with Eq. (6) shows that the concentration at the origin and 
the number of particles inside the absorber are proportional to each other 
in the long-time limit, 

1 
c(x =0, t ) ~ S _ ( t ) ,  t>>tq (10) 

Since S (t)~ t -1/2, the time derivative will be a subdominant contribution 
in Eq. (2). Neglecting this term and using Eq. (6) gives 

Deo D Oc(x't) ,,~qS (t) (11) 
0x x=o (r~ Dt) 1/2 

i.e., the flux is the same as that entering a perfect trap. There also is a 
depletion zone (the extent over which the concentration is spatially vary- 
ing) which is of the order of (Dt) 1/2. In the long-time regime, therefore, the 
solution to Eq. (1) is essentially determined by the absorption term, since 
the time derivative in the diffusion-absorption equation is negligible. Thus 
the solution can be characterized as being "absorption controlled." 

A useful way to characterize the penetration of particles into the 
absorber is to monitor the time dependence of the average position of the 
particles which are in the absorbing medium, ( l ( t ) ) - - S ~  t) 
dx /S( t ) .  From the first line of Eq. (4), the Laplace transform of the 
numerator of ( l ( t ) )  is Dco/s(s + q) [ l + ~(s) ]. Laplace inversion gives 

S_(t)(l( t))=col~EIo(t/2tq)exp(-t /2tq)-exp(-t / tq)] (12) 

The penetration depth thus has the asymptotic behaviors 

(Tz Dt) ~/2, t ~ tq 
(l(t))~-- lq, t~tq (13) 

822/71/'1-2-6 
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The short-time behavior merely recovers the behavior of freely diffusing 
particles. On the other hand, the long-time behavior can be understood in 
a simple way by applying a quasistatic approximation to the diffusion- 
absorption equation. This involves neglecting the time derivative term in 
this equation, and then solving subject to the time-dependent boundary 
condition c(0, t )=  Co(tq/TZt) 1/2 [-Eq. (9)]. Inside the absorber, this yields 

c(x, t) (rct/tq) m exp , x < 0  (14) 

which immediately gives the above long-time behavior of ( l ( t ) ) .  

2.2. Single-Particle Initial Condition 

For the complementary problem where one particle is initially at the 
origin, e(x, t = 0)= 6(x), the solution to Eq. (1) in Laplace space is 

(D )1/2 1 + e(s) exp x , x < 0 

c ( x , s ) =  1 l - / s \ X l 2 G  (15) 

t . ~ l + - - - ~  expL ~ 5 )  J - x  , x > 0  

Thus the survival probability, S(t) = ~ c(x, t) dx, equals 

S(t) = Io(t/2tq) exp( -  t/2tq) ~ (tq/7~t) 1/2, t/tq ~ ~ (16) 

while the survival probability in the absorbing medium is 

S_ (t) = l[Io(t/2tq) -- ll(l/2tq)] e x p (  - -  t/2tq) 

[1/(2 x//~)](tq/t) 3/2, t/tq ~ oo (17) 

These quantities are independent of the diffusion coefficient, in contrast to 
the corresponding behavior for the uniform initial condition. By applying 
standard Bessel function identities, it follows that S(t)= - q S _ ( t ) ,  i.e., the 
loss of particles is simply related to the concentration in the absorbing 
medium, as required by integration of Eq. (1) over all space. Similarly, the 
density at the origin is 

tq [ ( ~ q ) ]  
c(x=0,  t ) -  (47z Dt3) 1/2 1--exp - (18) 

For short times, this density is diffusion controlled [ ~ (4re Dt)- l l2] ,  while 
for later times e(0, t) approaches the value S (t)/lq. Other properties such 
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as the concentration profile inside the absorber and the average penetration 
are similar to those obtained in the many-particle case. 

Analogous results can be obtained within a discrete random walk 
formulation, where absorption is described by a random walk which is 
annihilated with probability 0 ~< p ~< 1 when it lands on an absorbing site. 
The dominant contribution to the survival probability at the nth step arises 
from walks which remain in the region x > 0 up to this time, and the latter 
have a probability which is proportional to n - v 2 .  Similarly, the survival 
probability inside the absorber is dominated by walks which enter the 
absorbing region for the first time at the n th step, which have a probability 
proportional to ~ n-3/2. Formally, the full probability distribution in the 
composite can be found in terms of P, , (x ,  r), the probability that an n-step 
random walk at position x has visited the region x < 0 exactly r times. (6'7) 

3. THE N E A R E S T - N E I G H B O R  D ISTANCE 

One useful way to quantify the distribution of diffusing particles near 
a trap is through the position of the nearest particle to the trap, Xm, (8-11~ 
which may be defined by 

;om c(x ,  t)  d x  = 1 

In one dimension with a perfect absorber at the origin, x m 0(2 (Dt / r  1/4. 
For a sufficiently weak trap, however, we shall demonstrate that there is an 
intermediate-time regime where the closest distance grows as t 1/2. 

From our previous results for the concentration at the origin and its 
first derivative, the behavior of the concentration near the origin is 

CO C O 
c(x ,  t)  lrct/tq / ) -t- Dt~l/~ ) x,  t >~ tq (19) 

Using this form for the concentration, we obtain for x m 

X m ~- lq{ [1 + 2(rot/to) ~/2 ] ~/2 _ 1 } (2o) 

with t o = D c ~ / q  2. Equation (20) is valid for t > > t q = l / q ,  and thus 
0 = tol l  q = Dc2 /q ,  which is a dimensionless measure of the strength of the 
absorber, is a relevant parameter. For  a sufficiently weak absorber, 0 >> 1, 
and the limiting behaviors of Eq. (20) are 

y( lr t / tqC2) 1/2, tq ~ t ~ t o (21) 
Xm ~ ~(4rc O t / c 2 )  1/4, t o ~ t 
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The different limiting behaviors arise from the two terms in Eq. (19); the 
constant term dominates at early times, while the linear term dominates 
at later times. Note that the intermediate-time behavior depends on the 
absorption rate, while the long-time behavior depends essentially on the 
diffusion coefficient. For 0 < 1, there is no intermediate-time regime, and 
the asymptotic behavior of a perfect trap is recovered. The physical 
meaning of to can be seen from the expression for the total number of 
particles in the absorber [Eq. (6)]. Namely, for t>> tq, S _ ( t ) ~  (t/nto) 1/2, so 
that to gives the time at which the total number of particles in the absorber 
falls below unity. 

4. E Q U I V A L E N C E  TO THE R A D I A T I O N  B O U N D A R Y  
C O N D I T I O N  

We now establish an equivalence between the partially absorbing one- 
dimensional composite and the free medium for x > 0 with a radiation 
boundary condition at x = 0. Such a boundary condition arises naturally in 
heat conduction between two media when the heat transfer is proportional 
to the temperature difference. As we shall see, this equivalence provides 
a useful tool for describing the physical manifestations of the partially 
absorbing medium. 

Combining Eqs. (10) and (11), which are valid at long times, 
immediately gives the radiation boundary condition {12} 

D Oc(X,ox t) x= o = (Dq)l/2 c(x, t) Ix:0 (22) 

Equation (22) reduces to an absorbing boundary condition for q = oo and 
to a reflecting boundary condition for q = 0 .  However, for q = 0 ,  the 
long-time limit t>> tq is never reached, and Eq. (22) does not hold for this 
case. 

To appreciate the consequences of the above equivalence, we solve the 
diffusion equation 

Oc(x, t) O ~2c(x' t) 
x > 0 (23) 

(?t 0x 2 ' 

with the radiation boundary condition of Eq. (22) and the initial condition 
c(x, t = O)= Coil(x). In Laplace space, the solution is 

, E ]} s 1 +/~(s) exp - x (24) 
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where fl(s) = (Stq) 1/2, while the solution in the time domain is 

+ Co exp ~q ~q erfc (4D~)1/2 \ t q /  / A  

with the notations of Eq. (7). In the long-time limit, the behavior given 
by the solution to the diffusion-absorption equation is recovered. For 
example, the concentration at the interface is 

c( x = O, t) = Co erfc( ( t/tq) 1/2) exp(t/tq) 

..~ Co(tq/TZt) 1/2, t >~ tq (26) 

Similarly, the intermediate-time behavior for the distance of the nearest 
particle from the interface varies as t 1/2, provided that the trap is suf- 
ficiently weak (0 >> 1). 

An essential aspect of the radiation boundary condition is that it 
provides, in conjunction with the image method, an alternative and useful 
way to quantify the effect of a partially absorbing medium. For the 
radiation boundary condition, the concentration profile given in Eq. (24), 
when evaluated at t = 0 and for x < 0, leads to an initial distribution of 
"image" concentration 

c1(x) = Co[2 exp(x/ lq)  - 1], x < 0 (27) 

This is a uniform distribution of antiparticles at concentration -Co and an 
exponentially decaying distribution of particles (Fig. 2a). The superposition 
of these two components gives rise to a change in sign of this initial image 
distribution at x =  - lq in 2. Owing to the equivalence between the solu- 
tions to the diffusion-absorption equation and to the diffusion equation 
with the radiation boundary condition, the effect of a partially absorbing 
medium is equivalent to a free medium with an initial distribution of 
images given in Eq. (27). 

This equivalence motivates our introduction of the virtual trap, which 
is the position where the time-dependent concentration vanishes in the 
solution to the diffusion equation with the radiation boundary condition. 
Equating C(rT, t )=  0 in Eq. (25) and keeping only the leading behavior for 
t>> tq gives r r ~  -lq. Thus, the time-dependent solution to a perfect trap 
located at - l q  provides an excellent approximation to the concentration 
obtained by imposing the radiation boundary condition (Fig. 2b). The 
position of this virtual trap is at the interface in the limit of a perfectly 
absorbing medium, and is infinitely far away in the no-absorption limit. 
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Fig. 2. Illustration of the virtual trap method. (a) For a radiation boundary condition, an 
initial uniform concentration of particles Co gives rise to an image distribution which consists 
of a uniform concentration Co of antiparticles and an exponential distribution of particles. This 
image distribution vanishes at x = lq In 2. (b) The time-dependent concentration in the case 
of the radiation boundary  condition (solid) is well approximated by the concentration in the 
presence of a perfect virtual trap at x = - lq ,  namely c(x, t ) =  Co erf((x + lq)/(4Dt) 1/2) (dots). 
For both plots lq = tq = c O ~ 1, and for (b) t = 16. 

5. PARTIAL A B S O R P T I O N  IN HIGHER D I M E N S I O N S  

The notion of a virtual trap can be readily extended to higher 
dimensions. In Section 5.1 we use the steady-state solution to the diffusion 
equation to find the location of the virtual trap for a radially symmetric 
geometry in arbitrary spatial dimension. An application to a time- 
dependent problem is presented in Section 5.2, where the virtual trap 
method is combined with the quasistatic approximation. 
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5.1. S teady-Sta te  Solut ion 

To illustrate the utility of the virtual trap method, consider radially 
symmetric flow of particles (or heat) into an imperfect trap. The 
steady-state concentration exterior to an absorber of radius a obeys the 
d-dimensional Laplace equation 

Drl_a ~ ra_ l 3c(r) O----~- = O, r > a (28) 

with the radiation boundary condition 

~c(r) ~= 
D ~ = (Dq) '/2 c(r) ]r=a (29) 

This equation describes, for example, the flow of particles to the trap from 
a continuous source of particles at a large outer sphere (in order to reach 
a steady state in one and two dimensions the system must be finite in 
extent). We are primarily interested in the solution for r>a ,  where the 
density takes the following forms: 

f r -- FT, 

c(r) oc ~ln(r/rr) , 

~ r ;  ~ - - r  -~, 

r r = a - - l q ,  d=  1 

rT = a exp( - lq/a), d = 2 

r r = a / ( l  + lq/a), d = 3  

(30) 

We interpret the point where the concentration vanishes as the loca- 
tion of the virtual trap. For d =  1, this location agrees with the form 
suggested in the previous section. For strong absorption or for a very large 
trap, i.e., lq/a= (Dtq)a/2/a~ 1, the one-dimensional expression r r = a - l  q 
holds for any dimension. In the opposite limit of weak absorption, the 
position of the virtual trap is 

~'a exp( - -  lq/a), d = 2 
rT ~- ~a/(lq/a), d = 3 lq/a >> 1 (31 ) 

Thus, as expected, the size of the virtual trap vanishes in the limit of weak 
absorption. The exponential behavior occurs only in two dimensions, so 
that there is a significant difference between the dependence of the virtual 
trap size on the rate q for two and three dimensions. 

5.2. T i m e - D e p e n d e n t  Solut ion 

The determination of the location of the virtual trap for transient 
problems is based on solving the time-dependent diffusion equation with a 
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perfect trap at r r  given by Eq. (30), and considering this solution for r~> a. 
Although the exact solution to this problem is straightforward, it is much 
simpler to solve the problem in the quasistatic approximation to find the 
asymptotic behavior of the concentration. In this approximation, the time 
derivative in the diffusion equation is neglected and the time dependence is 
introduced by imposing the appropriate moving boundary conditions (9) 

C ( r )  ]r = (4Dr) 1/2 = CO and c(r) I r = rr = 0 (32) 

These conditions reflect the fact that the depletion zone width is controlled 
by diffusion, and outside this zone the concentration is equal to its initial 
value c 0. Solving Laplace's equation within the depletion zone, a~< 
r <~ x/4Dt, and according to the above boundary conditions, we obtain 

( co ( r -  rr)/(4Dt) 1/2, d= 1 

c(r, t) = tco{ln(r/rv)/ln[(4Dt)l/2/rv] }, d= 2 
[ c o ( r ; l _ r  1 ) / [ r~ l_(4Ot)  1/2], d = 3  

(33) 

The concentration at the interface r = a can now be evaluated by using the 
expressions for r r  from Eq. (30), 

f Co(tq/t) 1/2, d= 1 
c(a, t )= ICo/{(a/Iq)ln[(4Dt)W2/a] + 1 }, d= 2 

[.Co/(1 "-I- a/lq), " d = 3 
(34) 

The expression for d = 1 differs by a factor of x/-~/2 from the exact 
result, a by-product of the quasistatic approximation. For  three dimen- 
sions, in contrast, the concentration reaches a constant value, since a 
steady state is ultimately reached. The strength of the trap does not affect 
the time necessary to reach a steady concentration. In the marginal case of 
two dimensions, on the other hand, the time for the concentration to 
become appreciably less than the initial concentration occurs when the two 
terms in the denominator of Eq. (34) are comparable. We define this as the 
"initiation" time of the trap, 

z = (a2/D) exp(2lq/a) ,  lq/a >> 1 (35) 

In the weak absorption limit, z is exponentially long, since the virtual trap 
is exponentially small. Amusingly, z can be rewritten as to = (a2/D)(a/rT) 2, 
i.e., the initiation time equals a diffusion time multiplied by the ratio of 
the areas of the imperfect trap to the perfect trap. The initiation time is 
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relevant in calculating the nearest neighbor distance, since for t < ~, the 
nearest neighbor distance varies roughly as c o v2, and for t >> r, the distance 
grows as (ln t)1/2. (9-111 

6. S U M M A R Y  

We investigated the properties of diffusion in the presence of an imper- 
fect absorber. Our primary result is that the effect of a partial absorber is 
equivalent to a virtual, perfect trap whose spatial extent is smaller than the 
partially absorbing medium. By exploiting this analogy, we found the 
survival probability of a diffusing particle in the presence of a semi-infinite 
one-dimensional absorber to decay as ,-~ t-1/2, just as in the case of a per- 
fect trap. This result follows because the survival probability is dominated 
by particles in the nonabsorbing region (x > 0) that reach the edge of the 
trapping region for the first time at time t. It is this observation that 
accounts for the success of the virtual trap analogy in reproducing the prin- 
cipal features of the kinetics of the system. However, in the case of weak 
absorption, there is an intermediate-time regime where there is substantial 
penetration of particles into the absorbing medium. The temporal range for 
which this penetration occurs can be described as the time domain before 
the virtual trap turns on, in the virtual trap description. 

For  higher dimensions, the virtual trap size tends to zero if the absorber 
is weak. In two dimensions, this size decays exponentially and that gives 
rise to an exponentially large crossover time compared with a power-law 
dependence in one dimension. Although we used terminology appropriate 
for diffusing particles, the temperature obeys the same diffusion equation 
and thus this analogy is relevant to heat conduction problems as well. The 
virtual trap method is relatively versatile for treating more general 
geometries and may be applied to situations such as partial absorption of 
an anisotropic absorber. 
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